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ABSTRACT. We obtain new results on existence of multiple positive solutions of systems of non-

linear Caputo fractional differential equations with some of general separated boundary conditions

by considering the corresponding systems of Hammerstein integral equations. The relations between

the linear Caputo fractional differential equations and the corresponding linear Hammerstein integral

equations are studied. The relations show that suitable Lipschitz type conditions are needed when

one studies the nonlinear Caputo fractional differential equations and it seems that the continuity

assumptions on nonlinearities used previously are not sufficient. This is different from other bound-

ary value problems such as the Riemann-Liouville fractional boundary value problems, where the

nonlinearities satisfy weaker conditions such as continuity. As applications, we study some specific

systems of Caputo fractional differential equations, and improve some previous results where other

derivatives are employed.
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1. INTRODUCTION

We study existence of multiple positive solutions of systems of Caputo fractional

differential equations of the form

−cDqzi(t) = fi(t, z(t)) for a.e. t ∈ [0, 1] and i ∈ In (1.1)

subject to some of the following general separated boundary conditions (BCs):

αzi(0) − βz′i(0) = 0, γzi(1) + δz′i(1) = 0, (1.2)
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where z(t) = (z1(t), . . . , zn(t)),
cDq is the Caputo differential operator of order q ∈

(1, 2) (see [8, 9, 13, 25]) and cDqzi(t) = z′′i (t) when q = 2. The parameters α, β, γ, δ

are positive real numbers. [Precise definitions of the symbols and notations in the

Introduction will be given later].

The Caputo fractional ordinary and partial differential equations arise in appli-

cations and have been widely studied. We refer to [11, 12, 24, 28] for the study on

the Caputo fractional diffusion-wave equations including telegraph equations, where

q ∈ (1, 2) and to [25, 26, 27, 31] for some suggestions of applications in physics and

engineering.

When q = 2 and n = 1, the existence of positive solutions of (1.1)–(1.2) has been

widely studied, for example see [18, 19, 22, 23, 30, 32].

The uniqueness and existence of one or three solutions for some Caputo fractional

boundary value problems (BVPs) of order q ∈ (1, 2) have been studied in [1, 3, 10,

15, 33, 34, 35], but either the fractional differential equations or the BCs involved are

different from the equation (1.1) with n = 1 or the BCs (1.2).

When n = 1, using the Leray-Schauder topological degrees, existence of (not

necessarily positive) solutions of (1.1) with the mixed or closed BCs is studied in

[2], where the solution may be zero and existence of nonzero positive solutions is not

given. We note that (1.2) overlaps with the mixed BCs given in [2].

To the best of our knowledge, there has been little study on the existence of

nonzero positive solutions for systems of Caputo fractional differential equations

(1.1)–(1.2) with q ∈ (1, 2), see [4] for the study of system of Caputo fractional dif-

ferential equations with nonlocal and integral boundary conditions. We refer to [20]

for the related study on the existence of nonzero positive solutions for system of the

Riemann-Liouville fractional differential equations.

In this paper, we first work on the relation between the linear Caputo fractional

differential equation of the form

−cDqw(t) = y(t) for a.e. t ∈ [0, 1], (1.3)

subject to the following general separated BCs

αw(0) − βw′(0) = 0, γw(1) + δw′(1) = 0, (1.4)

where α, β, δ, γ ∈ R satisfy αγ + αδ + βγ 6= 0 and the linear Hammerstein integral

equation

w(t) := Ly(t) =

∫ 1

0

k(t, s)y(s) ds for t ∈ [0, 1], (1.5)

where k is the Green’s function corresponding to (1.3)-(1.4) and will be given in next

section. We shall prove that if y ∈ AC[0, 1], then w is a solution of (1.3)–(1.4) (see
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Theorem 2.4 (iii)) and, conversely, if w ∈ AC2[0, 1] and y ∈ L(0, 1) satisfy (2.1)-

(2.2), then y and w satisfy (1.5) (see Theorem 2.7). Unfortunately, we can neither

prove that if y ∈ C[0, 1], then w given in (1.5) is a solution of (1.3)–(1.4) nor show

that if y, w ∈ C[0, 1] satisfy (1.3)–(1.4), then y and w satisfy (1.5) although the last

two results have been widely used in some papers such as [2, 4, 5, 16, 34]. We shall

provide detailed proofs of our Theorems 2.4 and 2.7 which show why the conditions

y ∈ AC[0, 1] and w ∈ AC2[0, 1] are needed in Theorems 2.4 and 2.7, respectively.

Due to the requirement y ∈ AC[0, 1], the continuity assumption on the nonlin-

earities fi is not sufficient even when n = 1 (see [2, Lemma 1.2], [4, Lemma 3.1],

[4, Lemma 3.2], [5, Lemma 2.3], [16, Lemma 2.3] and [34, Lemma 3.1], where the

continuity is used) and we need stronger conditions imposed on fi. To overcome the

difficulty, we impose suitable Lipschitz type conditions on fi which are stronger than

continuity (see the condition (h) in section 3) and are suitable to be used to study

(1.1)–(1.2) for each n ∈ N.

Next, we prove some properties of the Green’s function k. We shall show that

for some BCs of (1.4), k is positive and for some other BCs, k takes negative values.

We seek those BCs under which the Green’s functions are positive and satisfy the

required inequalities.

Finally, we study the existence of one or two nonzero positive solutions of sys-

tem (1.1)–(1.2) with q ∈ (1, 2) by considering the system of Hammerstein integral

equations of the form

z(t) = (A1z(t), . . . , Anz(t)) := Az(t) for t ∈ [0, 1], (1.6)

where Aiz(t) =
∫ 1

0
k(t, s)fi(s, z(s)) ds for t ∈ [0, 1]. We apply the results on the

systems of Hammerstein integral equations with positive kernels obtained by Lan

and Lin [20] to treat (1.6).

As illustrations of our new results on positive solutions of system (1.1)–(1.2),

we prove that the existence of one or two nonzero positive solutions of (1.1)–(1.2)

with some specific nonlinearities fi and improve some previous results, where other

derivatives are involved. In particular, the nonlinearities we consider are fi(t, z) =
∑n

j=1 aij(t)(sgn zj)|zj |
µij or fi(t, z) = λ[aiz

αi

i (t) + biz
βi

i (t)]wi(ẑi), which are employed,

for example in [14, 20]. Some specific examples are provided.

2. LINEAR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we study the Hammerstein integral operator and properties of the

Green’s function arising from the linear Caputo fractional differential equation of the

form

−cDqw(t) = y(t) for a.e. t ∈ [0, 1] (2.1)
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subject to the following general separated BCs

αw(0) − βw′(0) = 0, γw(1) + δw′(1) = 0, (2.2)

where α, β, δ, γ ∈ R satisfy

Λ := αγ + αδ + βγ 6= 0, (2.3)

cDq is the Caputo differential operator of order q ∈ (1, 2), namely,

cDqw(t) =
1

Γ(2 − q)

∫ t

0

w′′(s)

(t− s)q−1
ds, (2.4)

where Γ is the standard Gamma function defined by

Γ(s) =

∫ ∞

0

xs−1e−x dx.

The Caputo differential operator of order q > 0 was introduced by Caputo [8] in 1967

(also see [9, 13, 25]). We refer to [6, 17, 25, 29] for the properties of the Caputo

differential operators.

We define a function k : [0, 1] × [0, 1) → R by

k(t, s) =
1

ΛΓ(q)















(β + αt)[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
− Λ(t− s)q−1 if s ≤ t,

(β + αt)[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
if t ≤ s

(2.5)

and a Hammerstein integral operator L by

Ly(t) =

∫ 1

0

k(t, s)y(s) ds for t ∈ [0, 1]. (2.6)

Let

w(t) = Ly(t) for t ∈ [0, 1]. (2.7)

We first study the relation between (2.1)–(2.2) and (2.7). We need some new prop-

erties of the Riemann-Liouville fractional integral Iq and the Riemann-Liouville dif-

ferential operators. Recall that the integral

Iqw(t) =
1

Γ(q)

∫ t

0

w(s)

(t− s)1−q
ds for q, t > 0 (2.8)

is said to be the Riemann-Liouville fractional integral of order q > 0. It is known

that if q ∈ (0, 1), then Iq maps L(0, 1) to L(0, 1), see [29, (2.8) in page 30]. Hence,

for each q ∈ (0,∞), Iq maps L(0, 1) to L(0, 1).

We denote by AC[0, 1] the space of all the absolutely continuous functions defined

on [0, 1]. It is known that w ∈ AC[0, 1] if and only if there exist φ ∈ L(0, 1) and c ∈ R

such that

w(t) = c+

∫ t

0

φ(s) ds for t ∈ [0, 1].

Let

AC2[0, 1] = {w ∈ C1[0, 1] : w′ ∈ AC[0, 1]}.
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Then

AC2[0, 1] = {w ∈ C1[0, 1] : w′′ ∈ L(0, 1)}. (2.9)

Since
cDqw(t) =

1

Γ(2 − q)

∫ t

0

w′′(s)

(t− s)1−(2−q)
ds = I2−qw′′(t),

we obtain that if q ∈ (1, 2), then cDq maps AC2[0, 1] ⊂ L(0, 1) into L(0, 1).

Recall that the Riemann-Liouville differential operators of order q ∈ (0, 1) and

q ∈ (1, 2), respectively, are given by

Dqw(t) =
1

Γ(1 − q)

d

dt

∫ t

0

w(s)

(t− s)q
ds = (I1−qw(t))′ if 0 < q < 1 (2.10)

and

Dqw(t) =
1

Γ(2 − q)

d2

dt2

∫ t

0

w(s)

(t− s)q−1
ds = (I2−qw(t))′′ if 1 < q < 2. (2.11)

We refer to [17, 29] for the study of the Riemann-Liouville fractional integrals and

the Riemann-Liouville fractional differential operators of any orders.

We define a subset of L(0, 1) as follows.

F q
0 (0, 1) = {v ∈ L(0, 1) : I1−qv ∈ AC[0, 1] and I1−qv(0) = 0}. (2.12)

By [29, Lemma 2.1], we have

AC[0, 1] ⊂ F q
0 (0, 1) for each q ∈ (0, 1). (2.13)

By [29, Theorem 2.1], Iq maps L(0, 1) into F q
0 (0, 1) and is one to one and onto for

each q ∈ (0, 1).

We now give some properties of the integral operator given in (2.6).

Lemma 2.1. Let q ∈ (1, 2) and α, β, δ, γ ∈ R satisfy Λ 6= 0, where Λ is defined in

(2.3). Let y ∈ L(0, 1) be such that
∫ 1

0

y(s)

(1 − s)2−q
ds <∞. (2.14)

Then the function w defined in (2.7) has the following properties.

(i)

w(t) = −
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds+ a0 + a1t for t ∈ [0, 1], (2.15)

where

a0 =
β

ΛΓ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds (2.16)

and

a1 =
α

ΛΓ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds. (2.17)

(ii) w′ ∈ F q−1
0 (0, 1).

(iii) w(0) = a0, w
′(0) = a1 and w satisfies (2.2).
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Proof. (i) Since y ∈ L(0, 1), q ∈ (1, 2) and (2.14) holds,
∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds =

∫ 1

0

(q − 1)δy(s)

(1 − s)2−q
ds+

∫ 1

0

γ(1 − s)q−1y(s) ds <∞.

It follows that a0 and a1 are well-defined. By (2.5) and (2.6), we have for t ∈ [0, 1],

w(t) =
1

ΛΓ(q)

{

∫ t

0

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
− Λ(t− s)q−1y(s) ds

+

∫ 1

t

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds

}

=
1

ΛΓ(q)

{

∫ t

0

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds− Λ

∫ t

0

(t− s)q−1y(s) ds

+

∫ 1

t

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds

}

= −
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds+ a0 + a1t

and (2.15) holds.

(ii) By (2.15), we have for a.e. t ∈ [0, 1],

w′(t) = −
(q − 1)

Γ(q)

∫ t

0

y(s)

(t− s)2−q
ds+ a1 = −Iq−1y(t) + a1. (2.18)

Since q − 1 ∈ (0, 1), Iq−1 maps L(0, 1) into F q−1
0 (0, 1) and thus, w′ ∈ F q−1

0 (0, 1).

(iii) By (2.15), w(0) = a0 and

w(1) = −
1

Γ(q)

∫ 1

0

(1 − s)q−1y(s) ds+ w(0) + a1.

Since Iq−1y(0) = 0, by (2.18) we obtain w′(0) = a1. By (2.14) and (2.18), w′(1) exists

and

w′(1) = −
(q − 1)

Γ(q)

∫ 1

0

y(s)

(1 − s)2−q
ds+ a1.

By (2.16) and (2.17), we see αw(0) − βw′(0) = αa0 − βa1 = 0 and

γw(1) + δw′(1) = γw(0) + (δ + γ)w′(0) −
1

Γ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds = 0.

Hence, w satisfies (2.2).

Remark 2.2. By Lemma 2.1 (iii), we see that Ly satisfies the boundary condition

(2.2) for q ∈ (1, 2) and y ∈ L(0, 1) satisfying (2.14). However, we can not prove that

w = Ly is a solution of the Caputo fractional differential equation (2.1) if there are

no additional conditions imposed on y.

In the following, we show that if y ∈ AC[0, 1], then w = Ly is a solution of (2.1).

To do this, we need some properties of the Riemann-Liouville fractional integral Iq.



SYSTEMS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS 67

Lemma 2.3. Let q ∈ (0, 1). Then the following assertions hold.

(i) Iq maps AC[0, 1] to AC[0, 1].

(ii) For each y ∈ AC[0, 1], IqDqy(t) = y(t) for a.e. t ∈ [0, 1].

Proof. (i) Let u ∈ AC[0, 1]. By (2.13), we have u ∈ F 1−q
0 (0, 1) and

Iqu = I [1−(1−q)]u ∈ AC[0, 1].

(ii) By [29, Theorem 2.4], for q ∈ (0, 1) and y ∈ F q
0 (0, 1),

IqDqy(t) = y(t) for a.e. t ∈ [0, 1].

This, together with (2.13) implies that the result (ii) holds.

Now, we are in a position to prove our main result in this section.

Theorem 2.4. Let α, β, δ, γ ∈ R satisfy Λ 6= 0 and q ∈ (1, 2). Then the following

assertions hold.

(i) If y ∈ L∞(0, 1) and w is defined by (2.7), then w′(t) exists for each t ∈ [0, 1]

and max{|w′(t) : t ∈ [0, 1]} <∞. Moreover, L maps L∞(0, 1) into C[0, 1].

(ii) L maps AC[0, 1] into AC2[0, 1].

(iii) If y ∈ AC[0, 1], then w := Ly is a solution of (2.1)-(2.2).

Proof. (i) If y ∈ L∞(0, 1), then (2.14) holds since
∫ 1

0

1

(1 − s)2−q
ds < ∞ and thus,

(2.18) holds. Since
∫ t

0

1

(t− s)2−q
ds =

1

q − 1
tq−1 <∞ for each t ∈ [0, 1], (2.19)

we see that (2.18) holds for each t ∈ [0, 1], that is,

w′(t) = −Iq−1y(t) + a1 for each t ∈ [0, 1]. (2.20)

Hence, w′(t) exists for each t ∈ [0, 1]. By (2.20) and (2.19), we have for t ∈ [0, 1],

|w′(t)| = | −
(q − 1)

Γ(q)

∫ t

0

y(s)

(t− s)2−q
ds+ w′(0)|

≤ ‖y‖L∞(0,1)
(q − 1)

Γ(q)

∫ t

0

1

(t− s)2−q
ds+ |w′(0)| ≤

‖y‖L∞(0,1)

Γ(q)
+ |w′(0)|.

It follows that max{|w′(t) : t ∈ [0, 1]} < ∞. Since w′(t) exists for each t ∈ [0, 1],

w ∈ C[0, 1] and L maps L∞(0, 1) into C[0, 1].

(ii) Let y ∈ AC[0, 1]. By Lemma 2.3 (i), Iq−1y ∈ AC[0, 1] and by (2.20), w′ ∈

AC[0, 1]. Hence, w ∈ AC2[0, 1].

(iii) By (2.20) and (2.10), we obtain

w′′(t) = −(Iq−1y(t))′ = −D2−qy(t) for a.e. t ∈ [0, 1]. (2.21)
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Since y ∈ AC[0, 1] and 2 − q ∈ (0, 1), by (2.21) and Lemma 2.3 (ii) we have

cDqw(t) = I2−qw′′(t) = −I2−qD2−qy(t) = −y(t) for a.e. t ∈ [0, 1]

and (2.1) holds. By Lemma 2.1 (ii), y and w satisfy (2.1)-(2.2).

Remark 2.5. By Theorem 2.4 (iii), if y ∈ AC[0, 1], then y and w satisfy (2.1)–(2.2).

By Theorem 2.4 (i), we see that L maps L∞(0, 1) into C[0, 1] and Ly satisfies the

boundary condition (2.2) for each y ∈ L∞(0, 1). Hence, L maps C[0, 1] into C[0, 1],

but it is not clear whether L maps C[0, 1] into AC2[0, 1]. Hence, we can not prove

that if y ∈ C[0, 1], then w = Ly is a solution of (2.1). However, the last result has

been widely used in some papers such as [2, Lemma 1.2], [4, Lemma 3.1],[5, Lemma

2.3], [16, Lemma 2.3] and [34, Lemma 3.1].

To give the inverse of Theorem 2.4 (iii), we need the following result which is a

special case of [17, Lemma 2.22].

Lemma 2.6. Let q ∈ (1, 2) and w ∈ AC2[0, 1]. Then

Iq(cDq)w(t) = w(t) − w(0) − w′(0)t for a.e. t ∈ [0, 1].

Theorem 2.7. Let α, β, δ, γ ∈ R satisfy Λ 6= 0 and q ∈ (1, 2). If w ∈ AC2[0, 1] and

y ∈ L(0, 1) satisfy (2.1)–(2.2), then (2.7) holds.

Proof. Since −cDqw(t) = y(t) for a.e. t ∈ [0, 1] and q ∈ (1, 2), we have

−Iq(cDq)w(t) = Iqy(t) =
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds for a.e. t ∈ (0, 1). (2.22)

By w ∈ AC2[0, 1] and Lemma 2.6,

Iq(cDq)w(t) = w(t) − w(0) − w′(0)t for a.e. t ∈ [0, 1].

Hence,

−
[

w(t) − w(0) − w′(0)t
]

= Iqy(t) for a.e. t ∈ [0, 1]. (2.23)

Since y ∈ L(0, 1) and q > 1, the function g defined by

g(s) := (1 − s)q−1y(s)

belongs to L(0, 1). It follows from the second equality of (2.22) that Iqy ∈ AC[0, 1].

Since w ∈ AC2[0, 1], the two functions in both sides of (2.23) are continuous and thus

(2.23) holds for every t ∈ [0, 1]. It follows that

w(t) = −
1

Γ(q)

∫ t

0

(t− s)q−1y(s) ds+ w(0) + w′(0)t for t ∈ [0, 1], (2.24)

By (2.24), we have

w(1) = −
1

Γ(q)

∫ 1

0

(1 − s)q−1y(s) ds+ w(0) + w′(0).
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and for t ∈ [0, 1],

w′(t) = −
(q − 1)

Γ(q)

∫ t

0

y(s)

(t− s)2−q
ds+ w′(0) = −Iq−1y(t) + w′(0).

Hence,

w′(1) = −
(q − 1)

Γ(q)

∫ 1

0

y(s)

(1 − s)2−q
ds+ w′(0).

By the boundary condition (2.2), we obtain










αw(0) − βw′(0) = 0,

γw(0) + (γ + δ)w′(0) =
1

Γ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds.

Solving the above system implies

w(0) =
β

ΛΓ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds

and

w′(0) =
α

ΛΓ(q)

∫ 1

0

[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds.

This, together with (2.24), implies that

w(t) =
1

ΛΓ(q)

{

∫ t

0

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
− Λ(t− s)q−1y(s) ds

+

∫ 1

t

(β + αt)[(q − 1)δ + γ(1 − s)]y(s)

(1 − s)2−q
ds

}

The result follows.

Remark 2.8. By the proof of Theorem 2.7, we see that the hypothesis w ∈ AC2[0, 1]

is used in an essential way. Even when w, y ∈ C[0, 1] satisfy (2.1)–(2.2), we can not

prove that w and y satisfy (2.7). However, the result is used in some papers, for

example, [2, Lemma 1.2], [4, Lemma 3.2], [5, Lemma 2.3], [16, Lemma 2.3] and [34,

Lemma 3.1].

Now, we study the properties of the Green’s function k defined in (2.5). We show

that for some boundary conditions (2.2), k always is positive and for some other

boundary conditions, k may take negative values. We seek those positive Green’s

functions which satisfy suitable inequalities which will be used in the following section.

We mention the eight types of boundary conditions contained in (2.2) (see [18,

19, 30]).

(B1) w(0) = w(1) = 0. (α = γ = 1, β = δ = 0).

(B2) w(0) = w′(1) = 0. (α = 1, γ = 0, β = 0, δ = 1).

(B3) αw(0) = βw′(0) and w(1) = 0 with α, β > 0. (γ = 1, δ = 0).

(B4) αw(0) = βw′(0) and w′(1) = 0 with α, β > 0. (γ = 0, δ = 1).
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(B5) αw(0) = βw′(0) and γw(1) = −δw′(1) with α, β, γ, δ > 0.

(B′
2) w

′(0) = w(1) = 0. (α = 0, γ = 1, β = 1, δ = 0).

(B′
3) γw(1) = −δw′(1) with γ, δ > 0 and w(0) = 0. (α = 1, β = 0).

(B′
4) γw(1) = −δw′(1) with γ, δ > 0 and w′(0) = 0. (α = 0, β = 1).

We define the following functions.

Φ(s) = k(s, s) =
(β + αs)[(q − 1)δ + γ(1 − s)]

ΛΓ(q)(1 − s)2−q
for s ∈ [0, 1) (2.25)

and

C(t) = min{C1(t), C2(t)} for t ∈ [0, 1], (2.26)

where

C1(t) =
β + αt

β + α
and C2(t) = 1 −

Λtq−1

(β + αt)[(q − 1)δ + γ]
.

Notation: Let

σ := σ(q) =
q − 1

2 − q
. (2.27)

The following result gives properties of the Green’s function k defined in (2.5) when

q ∈ (1, 2).

Proposition 2.9. Assume that q ∈ (1, 2) and α, β, δ, γ ≥ 0 satisfy Λ > 0, where Λ is

defined in (2.3). Then following properties hold.

(P1) The Green’s function k defined in (2.5) and the function Φ defined in (2.25)

satisfy

−
(1 − s)q−1

Γ(q)
≤ k(t, s) ≤ Φ(s) for t ∈ [0, 1] and s ∈ [0, 1). (2.28)

(P2) For each of (B1), (B2), (B3)
′, (B4) with α/β > σ, (B5) with α/β > σ, there

exists t0 ∈ (0, 1) such that

k(t, 0) < 0 for t ∈ (t0, 1).

(P3) If one of (B3), (B4) with α/β ≤ σ, (B2)
′, (B4)

′, (B5) with α/β ≤ σ holds,

then

k(t, s) ≥ 0 for t ∈ [0, 1] and s ∈ [0, 1).

(P4) If one of (B3), (B4), (B2)
′, (B4)

′, (B5) holds, then

k(t, s) ≥ C(t)Φ(s) for t ∈ [0, 1] and s ∈ [0, 1).

(P5) If one of (B3) with α/β ≤ σ, (B4) with α/β ≤ σ, (B2)
′, (B4)

′, (B5) with

α/β ≤ σ holds, then C(t) > 0 for t ∈ [0, 1) and

C(t)Φ(s) ≤ k(t, s) ≤ Φ(s) for t ∈ [0, 1] and s ∈ [0, 1). (2.29)

(P6) If one of (B4) with α/β < σ, (B4)
′, (B5) with α/β < σ holds, then C(t) > 0

for t ∈ [0, 1] and (2.29) holds.
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Proof. (P1) The first inequality of (2.28) follows from (2.5). We prove that the second

one holds. Let s ∈ [0, 1). We define h : [s, 1] → R by

h(t) := hs(t) = (β + αt)
(q − 1)δ + γ(1 − s)

(1 − s)2−q
− Λ(t− s)q−1. (2.30)

Then k(t, s) =
h(t)

ΛΓ(q)
for t ∈ (s, 1] and s ∈ [0, 1). Since (2 − q)αδ + βγ ≥ 0, we have

α[(q − 1)δ + γ] ≤ Λ.

Noting that t− s ≤ 1 − s and 1 − s ≤ 1, we obtain

α[(q − 1)δ + γ(1 − s)](t− s)

(1 − s)2−q
≤ Λ(t− s)q−1

and
αt[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
− Λ(t− s)q−1 ≤

αs[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
.

Adding
β[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
to both sides of the above inequality implies

h(t) ≤ ΛΓ(q)Φ(s) for t ∈ [s, 1]

and k(t, s) ≤ Φ(s) for t ∈ [s, 1]. It is obvious that k(t, s) ≤ Φ(s) for 0 ≤ t ≤ s < 1.

The results follows.

(P2) If (B1) holds, then we have for t ∈ (0, 1),

k(t, 0) =
1

ΛΓ(q)
[t− tq−1] < 0 for t ∈ (0, 1).

Since

k(1, 0) =
{(β + α)[(q − 1)δ + γ] − Λ}

ΛΓ(q)
=
δ[(q − 1)β − (2 − q)α]

ΛΓ(q)
. (2.31)

If (B2) or (B3)
′ holds, then α, δ > 0 and β = 0. This implies

(q − 1)β − (2 − q)α < 0.

If (B4) with α/β > σ or (B5) with α/β > σ holds, then α, β, δ > 0 and (q − 1)β −

(2 − q)α < 0. It follows from (2.31) that k(1, 0) < 0. The result follows from the

continuity of k.

(P3) Let s ∈ [0, 1). By (2.30), we have

h′(t) =
α[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
−

Λ(q − 1)

(t− s)2−q
for t ∈ (s, 1]

and

h′′(t) =
Λ(q − 1)(2 − q)

(t− s)3−q
≥ 0 for t ∈ (s, 1].

Hence, h is concave down on (s, 1], h′ is increasing on (s, 1] and

h′(t) ≤ h′(1) for t ∈ (s, 1].
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Moreover, by computation, we obtain

h′(1) =
γ[(2 − q)α− αs− (q − 1)β]

(1 − s)2−q
≤
γ[(2 − q)α− (q − 1)β]

(1 − s)2−q
.

If one of (B2), (B4), (B2)
′, (B4)

′ holds, then γ = 0 or α = 0. If either (B3) with

α/β ≤ σ, or (B5) with α/β ≤ σ holds, then (2− q)α− (q − 1)β ≤ 0. Hence, we have

h′(1) ≤ 0. It follows that h′(t) ≤ h′(1) ≤ 0 for t ∈ (s, 1] and h is decreasing on [s, 1].

This, together with the continuity of h at s, implies that

h(1) ≤ h(t) ≤ h(s) for t ∈ (s, 1]. (2.32)

Since

h(1) =
(β + α)[(q − 1)δ + γ(1 − s)]

(1 − s)2−q
− Λ(1 − s)q−1

=
δ[(q − 1)β − (2 − q)α + αs]

(1 − s)2−q
≥
δ[(q − 1)β − (2 − q)α]

(1 − s)2−q
.

If (B3) holds, then δ = 0. If either (B2)
′ or (B4)

′ holds, then α = 0. If (B4) with

α/β ≤ σ or (B5) with α/β ≤ σ, then (q− 1)β− (2− q)α ≥ 0. Hence, h(1) ≥ 0. This,

together with (2.32) and (2.5), implies k(t, s) ≥ 0 for s < t ≤ 1. It is obvious that

k(t, s) ≥ 0 for 0 ≤ t ≤ s < 1. The results follows.

(P4) Let t ∈ [0, 1]. If t ≤ s < 1, we have

k(t, s)

Φ(s)
=
β + αt

β + αs
≥
β + αt

β + α
= C1(t) ≥ C(t).

Since one of (B3), (B4), (B2)
′, (B4)

′ or (B5) holds, then β > 0. Let s ∈ [0, t) and

s ≤ t ≤ 1. Then

k(t, s)

Φ(s)
=

1

β + αs

[

(β + αt) −
Λ(t− s)q−1(1 − s)q−1

(q − 1)δ(1 − s)−1 + γ

]

≥
1

β + αt

[

(β + αt) −
Λ(t− s)q−1(1 − s)q−1

(q − 1)δ(1 − s)−1 + γ

]

≥
1

β + αt

[

(β + αt) −
Λtq−1

(q − 1)δ(1 − s)−1 + γ

]

≥
1

β + αt

[

(β + αt) −
Λtq−1

(q − 1)δ + γ

]

= C2(t) ≥ C(t).

(P5) For each of (B3) with α/β ≤ σ, (B4) with α/β ≤ σ, (B2)
′, (B4)

′, (B5) with

α/β ≤ σ, we have α/β ≤ σ and

α[(q − 1)δ + γ] − (q − 1)Λ ≤ 0. (2.33)

Let g(t) = (β + αt)[(q − 1)δ + γ] − Λtq−1 for t ∈ [0, 1]. Then by (2.33) we have for

t ∈ (0, 1),

g′(t) = α[(q − 1)δ + γ] −
(q − 1)Λ

t2−q
< α[(q − 1)δ + γ] − (q − 1)Λ ≤ 0.
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Hence, we obtain for t ∈ (0, 1),

g(t) > g(1) = (β + α)[(q − 1)δ + γ] − Λ =
(2 − q)δ

β

(

σ −
α

β

)

≥ 0.

Hence,

C2(t) =
g(t)

(β + αt)[(q − 1)δ + γ]
> 0 for t ∈ (0, 1).

(P6) Under the boundary conditions given in (P6), we have β, δ > 0 and α/β < σ.

It is easy to verify that if α/β < σ, then C2 is decreasing on [0, 1]. Hence, we have

for t ∈ [0, 1],

C2(t) ≥ C2(1) = 1 −
Λ

(β + α)[(q − 1)δ + γ]
=

(β + α)[(q − 1)δ + γ] − Λ

(β + α)[(q − 1)δ + γ]

=
δ(2 − q)(σ − α/β)

β(β + α)[(q − 1)δ + γ]
> 0.

It follows that C(t) > 0 for t ∈ [0, 1].

Let

m = (max
t∈[0,1]

∫ 1

0

k(t, s) ds)−1 and M(a, b) = (mint∈[a,b]

∫ b

a
k(t, s) ds)−1. (2.34)

The following result gives the formulas for m and M(a, b) which will be used in the

following section.

Proposition 2.10. (1) m =
qΛΓ(q)

(qδ + γ)[qβ + (q − 1)αt0]
, where t0 =

[α(qδ + γ)

qΛ

]
1

q−1 .

(2) M(a, b) =
qΛΓ(q)

min{(β + αa)(qδ + γ) − Λaq, (β + αb)(qδ + γ) − Λbq}
.

Proof. (1) Let h(t) = ΛΓ(q)
∫ 1

0
k(t, s) ds for t ∈ [0, 1]. By (2.5), we have for t ∈ [0, 1],

h(t) =

∫ 1

0

(β + αt)[(q − 1)δ + γ(1 − s)](1 − s)q−2 ds− Λ

∫ t

0

(t− s)q−1 ds

= (β + αt)(δ + γ/q) − Λtq/q

and

h′(t) = α(δ + γ/q) − Λtq−1 for t ∈ (0, 1]. (2.35)

Since t0 ∈ [0, 1], h′(t0) = 0 and tq0 =
α(δ + γ/q)t0

Λ
, we have for t ∈ [0, 1],

h(t) ≤ h(t0) = (δ + γ/q)(β + αt0 − αt0/q) = (δ + γ/q)
[

β +
(q − 1)α

q
t0

]

.

The result (1) holds.

(2) By (2.35), we have h′′(t) = −Λ(q − 1)tq−2 < 0 for t ∈ (0, 1] and h is concave

down on [0, 1]. Hence, we have

h(t) ≥ min{h(a), h(b)} > 0 for t ∈ [0, 1].

The result (2) follows.
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3. POSITIVE SOLUTIONS OF SYSTEMS OF CAPUTO

FRACTIONAL DIFFERENTIAL EQUATIONS

In this section, we study the existence of nonzero positive solutions of systems of

Caputo fractional differential equations of the form

−cDqzi(t) = fi(t, z(t)) for a.e. t ∈ [0, 1] and i ∈ In (3.1)

subject to one of the following boundary conditions:






































(B3) αzi(0) = βz′i(0) and zi(1) = 0;

(B4) αzi(0) = βz′i(0) and z′i(1) = 0;

(B5) αzi(0) = βz′i(0) and γzi(1) = −δz′i(1);

(B′
2) z′i(0) = zi(1) = 0;

(B′
4) z′i(0) = 0 and γzi(1) = −δz′i(1),

(3.2)

where z(t) = (z1(t), . . . , zn(t)) and q ∈ (1, 2). We always assume

0 < α < βσ, γ > 0 and δ > 0, (3.3)

where σ is given in (2.27).

We refer to [4] for the study of system of Caputo fractional differential equations

with nonlocal and integral boundary conditions.

Since we shall apply the property (P5) of Proposition 2.9, we restrict to these

boundary conditions given in (3.2).

When n = 1 and q ∈ (1, 2), the existence of (not necessarily positive) solutions

of (3.1) with the mixed or closed boundary conditions is studied in [2]. We note that

(2.2) overlaps with the mixed boundary conditions given in [2], namely

w′(0) = −aw(0) − bw(1) and w′(1) = bw(0) + dw(1), (3.4)

where a, b, d ∈ R. For example, if β, δ > 0, then (2.2) becomes (3.4) with a = −α/γ,

b = 0 and d = −γ/δ.

When n = 1, there are some results of BVPs involving Caputo derivatives cDq

with q ∈ (1, 2) (see [1, 3, 34, 35]), but the equations involved or the BCs are different

from (3.1) or (2.2).

We refer to [20] and the references therein for the study of systems of the

Riemann-Liouville differential equations of order q ∈ (1, 2).

To apply the results in [20], we need to verify that the Green’s function k defined

in (2.5) and the function C defined in (2.26) satisfy the required conditions used in

[20]. By (2.5) we see that k is continuous on [0, 1] × [0, 1) and by Proposition 2.9

(P5), we see that ‖C‖ ∈ (0, 1] and (2.29) holds. Hence, the condition (C1) in [20,



SYSTEMS OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS 75

section 2] holds. Moreover, k satisfies (C2) and (C3) with gi ≡ 1 in [20, section 2].

Let a, b ∈ [0, 1]. We define

c := c(a, b) = min{C(t) : t ∈ [a, b]}. (3.5)

It is easy to see that

c = min{C(a), C(b)} = min{C1(a), C2(b)}

since C1 is increasing and C2 is decreasing on [0, 1]. We need to choose suitable

a, b ∈ [0, 1] such that c > 0. We make the following choices.

(I) If the boundary condition is (B3) with α/β ≤ σ or (B2)
′, we choose a, b ∈ [0, 1).

(II) If the boundary condition is (B4) with α/β ≤ σ, (B4)
′, (B5) with α/β ≤ σ,

we choose a, b ∈ [0, 1].

By Proposition 2.9 (P5) and (P6), we see that with the above choices, the constant

c defined in (3.5) is greater than 0 and thus, the condition (P ) in [20, section 2] holds.

Moreover, for any {am}, {bm} ⊂ (0, 1) with limm→∞ am = 0 and limm→∞ bm = 1, we

have cm := c(am, bm) > 0 for m ∈ N. Hence, the condition (P ∗) in [20, section 2]

holds.

With the choices given in the above (I) and (II), we see that
∫ b

a

Φ(s) ds > 0. (3.6)

We denote by C([0, 1]; Rn) the Banach space of continuous functions from [0, 1]

into R
n with the norm ‖z‖ = max{‖zi‖ : i ∈ In}, where

‖zi‖ = max{|zi(t)| : t ∈ [0, 1]}.

We use the following cone in C([0, 1]; Rn) given in [20].

K = {z ∈ C([0, 1]; Rn
+) : zi(t) ≥ C(t)‖zi‖ for t ∈ [0, 1] and i ∈ In}.

We need the characteristic value, denote by µ1, of the linear Hammaerstin integral

operator

Lz(t) =

(
∫ 1

0

k(t, s)z1(s) ds, . . . ,

∫ 1

0

k(t, s)zn(s) ds

)

,

where k is given in (2.5). It is known that the characteristic value

µ1 = 1/r(L), (3.7)

where r(L) = limm→∞
m
√

‖Lm‖ is the radius of the spectrum of L.

By (3.6) and [20, Theorem 2.1], we see

m ≤ µ1 ≤M(a, b),

where m and M(a, b) are the same as in Proposition 2.10.
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We define

(Rn
+)I = {z ∈ R

n
+ : |z| ∈ I}, (3.8)

where I = [a, b] if a, b ∈ [0,∞) with a ≤ b and I = [a, b) if a, b ∈ [0,∞] with a < b.

We always assume that the following Lipschitz type conditions hold.

(h) For each r > 0, there exists Lr > 0 such that for each i ∈ In, fi : [0, 1]×R
n
+ → R+

satisfies the following condition: for all s1, s2 ∈ [0, 1] and z1, z2 ∈ (Rn
+)[0,r].

|fi(s2, z2) − fi(s1, z1)| ≤ Lr max{|s2 − s1|, |z2 − z1|},

where z2 = ((z2)1, . . . , (z2)n), z1 = ((z1)1, . . . , (z1)n) and

|z2 − z1| = max{|(z2)i − (z1)i| : i ∈ In}.

If all the first-order partial derivatives of fi : [0, 1] × R
n
+ → R+ is continuous on

[0, 1]×R
n
+ for i ∈ In, then the condition (h) holds and fi is continuous on [0, 1]×R

n
+.

Under the condition (h), we can prove that solutions of (3.10) are solutions

of (3.1)–(2.2) (see Proposition 3.1 below), where the Lipschitz type condition (h)

plays an important role since we need to employ Theorem 2.4 which requires y ∈

AC[0, 1]. We note that there is difficulty to replace the Lipschitz type condition (h)

by continuity of fi or the Carathéodory conditions employed in [20, 21].

Let i ∈ In and let

Aiz(t) =

∫ 1

0

k(t, s)fi(s, z(s)) ds for t ∈ [0, 1], (3.9)

where k is given in (2.5). We consider the fixed point equation of the form

z(t) = (A1z(t), . . . , Anz(t)) := Az(t) for t ∈ [0, 1]. (3.10)

Let

AC2([0, 1],Rn) = {z = (z1, . . . , zn) ∈ C([0, 1]; Rn) : zi ∈ AC2[0, 1] for i ∈ In}.

The following result shows that if z ∈ C([0, 1]; Rn) is a solution of (3.10), then z

is a solution of (3.1)–(3.2).

Proposition 3.1. Under the condition (h), if z ∈ C([0, 1]; Rn) is a solution of (3.10),

then z ∈ AC2([0, 1],Rn) and z is a solution of (3.1) subject to the following general

separated BCs

αzi(0) − βz′i(0) = 0, γzi(1) + δz′i(1) = 0, (3.11)

where α, β, δ, γ ∈ R satisfy Λ 6= 0.

Proof. Assume that z ∈ C([0, 1]; Rn) is a solution of (3.10). Then

zi(t) =

∫ 1

0

k(t, s)fi(s, z(s)) ds for t ∈ [0, 1] and i ∈ In.
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Let yi(s) = fi(s, z(s)) for s ∈ [0, 1]. Then yi ∈ L∞(0, 1) since yi is continuous on [0, 1].

By Theorem 2.4 (i), z′i(t) exists for t ∈ [0, 1] and ςi := max{|z′i(t)| : t ∈ [0, 1]} < ∞.

It follows that

|zi(s2) − zi(s1)| ≤ ςi|s2 − s1| for s2, s1 ∈ [0, 1].

This, together with the hypothesis (h), implies that for r = ‖z‖ and s2, s1 ∈ [0, 1],

|yi(s2) − yi(s1)| = |fi(s2, z(s2)) − fi(s1, z(s1))|

≤ Lr max{|s2 − s1|, |z(s2) − z(s1)|}

≤ Lr max{|s2 − s1|, ςi|s2 − s1|}

≤ Lr max{1, ςi : i ∈ In}|s2 − s1|

It follows that yi ∈ AC[0, 1] for i ∈ In. By Theorem 2.4 (iii), we have zi ∈ AC2[0, 1]

and

−cDqzi(t) = yi(t) = fi(t, z(t)) for a.e. t ∈ [0, 1] and i ∈ In.

Hence, z is a solution of (3.1)-(3.11).

Notation: We make the following definitions.

mφ =
(

max
t∈[0,1]

∫ 1

0

k(t, s)φ(s) ds
)−1

,Mψ = ( min
t∈[a,b]

∫ b

a

k(t, s)ψ(s) ds)−1.

We note that Proposition 2.10 gives the values mφ and Mψ when φ = ψ ≡ 1.

We list the following conditions used in [20].

(H1
≤)φρ

For each i ∈ In, there exists a measurable function φiρ : [0, 1] → R+ such

that
∫ 1

0
Φ(s)φiρ(s) ds > 0 and

fi(s, z) ≤ φiρ(s)mφi
ρ
ρ for a.e. s ∈ [0, 1] and all z ∈ (Rn

+)[0,ρ].

(H0
≥)ψρ

For each i ∈ I, there exists a measurable function ψiρ : [a, b] → R+ such

that
∫ b

a
Φ(s)ψiρ(s) ds > 0 and

fi(s, z) ≥ ψiρ(s)Mψi
ρ
cρ for a.e. s ∈ [a, b] and z ∈ (Rn

+)[0,ρ] with zi ∈ [cρ, ρ].

(H1
<)φρ

For each i ∈ In, there exist a measurable function (φρ)i : [0, 1] → R+ and

τi ∈ (0, m(φρ)i
) such that

∫ 1

0
Φ(s)(φρ)i(s) ds > 0 and

fi(s, z) ≤ (φρ)i(s)τiρ for a.e. s ∈ [0, 1] and all z ∈ (Rn
+)[0,ρ].

By (2.25) and Proposition 2.9 (P5), we see that

γ(0, 1) :=

∫ 1

0

Φ(s)C(s) ds > 0.

As mentioned above, the conditions (P ) and (P ∗) in [20, section 2] hold. By Theo-

rems 3.16 with gi ≡ 1 in [20], we obtain the following results on existence of nonzero

positive solutions of (3.1)–(3.2).
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Theorem 3.2. (1) Assume that one of the following conditions hold.

(H1) There exist ρ1, ρ2 > 0 with ρ1 < cρ2 such that (H1
≤)φρ1

and (H0
≥)ψρ2

hold.

(H2) There exist ρ1, ρ2 > 0 with ρ1 < ρ2 such that (H0
≥)ψρ1

and (H1
≤)φρ2

hold.

Then (3.1)–(3.2) with (3.3) has a solution z ∈ K with ρ1 ≤ ‖z‖ ≤ ρ2.

(2) Assume that one of the following conditions (H3) and (H4) holds.

(H3) The following conditions hold.

((fi)0)µ1
: there exist ε > 0 and ρ0 > 0 such that for each i ∈ In,

fi(s, z) ≥ (µ1 + ε)zi for a.e. s ∈ [0, 1] and all z ∈ (Rn
+)[0,ρ0].

(f∞
i )µ1

: there exist ε > 0 and ρ0 > 0 such that for each i ∈ In,

fi(s, z) ≤ (µ1 − ε)zi for a.e. s ∈ [0, 1] and all z ∈ (Rn
+)[ρ0,∞).

(H4) The following conditions hold.

(f 0
i )µ1

: there exist ε > 0 and ρ0 > 0 such that for i ∈ In,

fi(s, z) ≤ (µ1 − ε)zi for a.e. s ∈ [0, 1] and all z ∈ (Rn
+)[0,ρ0].

((fi)∞)µ1
: there exist ε > 0 and ρ0 > 0 such that for each i ∈ In,

fi(s, z) ≥ (µ1 + ε)zi for a.e. s ∈ [0, 1] and all z ∈ (Rn
+)[ρ0,∞).

Then (3.1)–(3.2) with (3.3) has a nonzero solution in K.

To state our second result, we need the relatively open set in K defined by

Ωρ = {z ∈ K : qn(z) < cρ},

where ρ > 0, c is defined in (3.5), qn(z) = max{q(zi) : i ∈ In} and q(zi) = min{zi(t) :

t ∈ [a, b]}. We refer to [20, Lemma 3.9] for properties of Ωρ = {z ∈ K : qn(z) < cρ}.

Let Kρ = {z ∈ K : ‖z‖ < ρ}.

By Theorems 3.17 with gi ≡ 1 in [20], we obtain the following results on existence

of two nonzero positive solutions of (3.1)–(3.2) with (3.3).

Theorem 3.3. (1) Assume that one of the following conditions holds.

(S1) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < cρ2 and ρ2 < ρ3 such that

(H1
≤)φρ1

, (H0
≥)ψρ2

, z 6= Az for z ∈ ∂Ωρ2 and (H1
≤)φρ3

hold.

(S2) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < cρ3 such that

(H0
≥)ψρ1

, (H1
≤)φρ2

, z 6= Az for z ∈ ∂Kρ2 and (H0
≥)ψρ3

hold.

Then (3.1)–(3.2) with (3.3) has two nonzero solutions in K. Moreover, in (S1), if

(H1
≤)φρ1

is replaced by (H1
<)φρ1

, then (3.1)–(3.2) with (3.3) has the third solution

z0 ∈ Kρ1.

(2) Assume that one of the following conditions holds.
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(S3) Assume that ((fi)
0)µ1

and ((fi)
∞)µ1

hold and there exists ρ ∈ (0,∞) such

that (H0
≥)ψρ

holds and z 6= Az for z ∈ ∂Ωρ.

(S4) Assume that ((fi)0)µ1
and ((fi)∞)µ1

hold and there exists ρ ∈ (0,∞) such

that (H1
≤)φρ

holds and z 6= Az for z ∈ ∂Kρ.

(S5) Assume that ((fi)0)µ1
hold and there exist ρ2, ρ3 ∈ (0,∞) with ρ2 < cρ3 such

that (H1
≤)φρ2

, z 6= Az for z ∈ ∂Kρ2 and (H0
≥)ψρ3

hold.

Then (3.1)–(3.2) with (3.3) has two nonzero solutions in K.

As applications of Theorem 3.2, we consider the system of Caputo fractional

differential equations of the form

cDqzi(t) +

n
∑

j=1

aij(t)hij(z(t)) = 0 for a.e. t ∈ [0, 1] and i ∈ In (3.12)

subject to the boundary condition (3.2) with (3.3).

Theorem 3.4. Assume that for i, j ∈ In, the following conditions hold.

(1) aij : [0, 1] → R+ has a continuous derivative on [0, 1] and satisfies

∫ b

a

Φ(s)aij(s) ds > 0,

where a, b are given in (I) and (II) mentioned above and Φ is given in (2.25).

(2) All the first order partial derivatives of hij : R
n
+ → R+ is continuous on R

n
+

and there exist µij > 1 for i, j ∈ In, ρ0 > 0 and ρ∗ > ρ0 such that

hij(z) ≤ |z|µij for z ∈ (Rn
+)[0,ρ0] (3.13)

and

hii(z) ≥ |zi|
µii for z ∈ (Rn

+)[ρ∗,∞) with zi ≥ c|z|. (3.14)

Then (3.12)–(3.2) with (3.3) has a nonzero solution in K.

Proof. For i ∈ In, we define a function fi : [0, 1] × R
n
+ → R+ by

fi(s, z) =

n
∑

j=1

aij(s)hij(z).

By the first parts of the conditions (1) and (2), fi satisfies the condition (h).

Let M = max{
∑n

j=1

∫ 1

0
Φ(s)aij(s) ds : i ∈ In}. Then by the condition (1), we

have M ∈ (0,∞). Let µ = min{µij : i, j ∈ In} and 0 < ρ1 < min{1, ρ0, (
1

M
)

1

µ−1}.

Then ρ
µij−1
1 ≤ ρµ−1

1 for i, j ∈ In. For i ∈ In, we define φiρ1 : [0, 1] → R+ by

φiρ1(s) =
n

∑

j=1

aij(s)ρ
µij−1
1 .
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By Proposition 2.9 (P5) and µ > 1, we have for t ∈ [0, 1],

∫ 1

0

k(t, s)φiρ1(s) ds ≤

∫ 1

0

Φ(s)φiρ1(s) ds ≤ ρµ−1
1

n
∑

j=1

∫ 1

0

Φ(s)aij(s) ds

≤ ρµ−1
1 M < 1

and mφi
ρ1
> 1. By (3.13), we have for s ∈ [0, 1] and z ∈ (Rn

+)[0,ρ1],

fi(s, z) ≤
n

∑

j=1

aij(s)ρ
µij−1
1 ρ1 = φiρ1(s)ρ1 < φiρ1(s)mφi

ρ1
ρ1

and (H1
<)φρ1

holds.

Let µ∗ = min{µii : i ∈ In} and M∗ = min{
∫ b

a
Φ(s)aii(s) ds : i ∈ In}. Let

ρ2 > max{ρ∗,
1

c
,
( 1

cµ∗M∗

)
1

µ∗−1}. For each i ∈ In, we define ψiρ2 : [0, 1] → R+ by

ψiρ2(s) = aii(s)(cρ2)
µii−1.

By (2.29) and (3.5), we have for t ∈ [a, b],
∫ b

a

k(t, s)ψiρ2(s) ds ≥ c(cρ2)
µii−1

∫ b

a

Φ(s)aii(s) ds ≥ c(cρ2)
µ∗−1M∗ > 1

and Mψi
ρ2
> 1. By (3.14), for s ∈ [0, 1] and z = (zi, ẑi) ∈ [cρ2, ρ2] × [0, ρ2]

n−1,

fi(s, z) ≥ aii(s)hii(z) ≥ aii(s)|zi|
µii ≥ ψiρ2(s)(cρ2) > ψiρ2(s)Mψi

ρ2
(cρ2)

and (H0
≥)ψρ2

holds. The result follows from Theorem 3.2 (H1).

As applications of Theorem 3.4, we consider the system of Caputo fractional

differential equations of the form

cDqzi(t) +

n
∑

j=1

aij(t)(sgn zj(t))|zj(t)|
µij = 0 a.e. on [0, 1] and i ∈ In (3.15)

subject to the boundary condition (3.2) with (3.3).

It is well-known that when n = 1 and q = 2, (3.15) is the generalized Emden-

Fowler equation, see [23, 32]. Such equations arise in the fields of gas dynamics,

nuclear physics, chemically reacting systems [32] and in the study of multipole toroidal

plasmas [7]. When q = 2, that is, cDqzi(t) = z′′i (t), the above system with Dirichlet

boundary conditions was studied in [14], where aij ∈ C([0, 1],R+). By applying

Theorem 3.2, Lan and Lin [20] studied existence of nonzero positive solutions of

system (3.15) with the Riemann-Liouville differential operator Dq of order ∈ (1, 2)

(i.e., cDq is replaced by Dq defined in (2.11)) and the following the boundary condition

zi(0) = 0, γzi(1) + δz′i(1) = 0. (3.16)

The method used in [20] is different from that in [14], and [20] allows aij ∈ L1(0, 1).
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Here we consider (3.15)–(3.2) with (3.3) but require aij to satisfy Theorem 3.4

(1) since the Caputo fractional differential operator cDq is considered.

By Theorem 3.4 with hij = |zj |
µij , we obtain

Corollary 3.5. Let i, j ∈ In. Assume that the following conditions hold:

(i) aij : [0, 1] → R+ satisfies the condition (1) of Theorem 3.4

(ii) µij > 1 for i, j ∈ In.

Then (3.15)–(3.2) with (3.3) has a nonzero solution in K.

By Corollary 3.5, we obtain

Example 3.6. The following Caputo fractional differential equation

cDqzi(t) +

n
∑

j=1

|zj(t)|
i+j = 0 for a.e. t ∈ [0, 1] and i ∈ In

with (3.2)–(3.3) has a nonzero solution in K.

Now, we apply Theorem 3.3 to study existence of two nonzero positive solutions

of systems of Caputo fractional differential equations of the form

cDqzi(t) + hi(z(t)) = 0 for a.e. t ∈ [0, 1] and i ∈ In (3.17)

subject to the boundary condition (3.2) with (3.3).

Theorem 3.7. For each i ∈ In, assume that the following conditions hold.

(i) All the first-order partial derivatives of hi : R
n
+ → R+ are continuous.

(ii) There exist ρ1 > 0, σ1 > 0, a continuous function ηi : (0,∞) → R+ and

ρi > 0 such that ηi is decreasing on (0, ρi], increasing on [ρi,∞), limx→0+ ηi(x) = ∞

and limx→∞ ηi(x) = ∞, and

hi(z) ≥ ηi(zi)σ1zi for z ∈ (Rn
+)[0,ρ1].

(iii) There exists ρ2 > 0 such that

hi(z) < m|z| for z ∈ (Rn
+)[0,ρ2],

where m is the same as in Proposition 2.10.

(iv) There exist ρ3 > 0 and σ3 > 0 such that

hi(z) ≥ ηi(zi)σ3zi for z ∈ (Rn
+)[0,ρ3] and zi ≥ c|z|.

Then (3.17)–(3.2) with (3.3) has two nonzero solutions in K.



82 K. Q. LAN AND W. LIN

Proof. We define a function fi : [0, 1] × R
n
+ → R+ by

fi(s, z) = hi(z).

By the condition (i), fi satisfies the condition (h). By (iii), we see that (H1
<)φρ2

with

φρ2 ≡ 1 holds. Let ρ∗ = min{ρi : i ∈ In} and ε > 0. Since ηi is decreasing on (0, ρ∗)

and limx→0+ ηi(x) = ∞, we can choose 0 < ρ1 < min{ρ2, ρ
∗} such that

ηi(ρ1) ≥ (µ1 + ε)σ−1
1 ,

where µ1 is given in (3.7). By (ii), we have for i ∈ In, s ∈ [0, 1] and z ∈ (Rn
+)[0,ρ1],

fi(s, z) ≥ ηi(zi)σ1zi ≥ ηi(ρ1)σ1zi ≥ (µ1 + ε)zi.

Hence, ((fi)0)µ1
holds.

Let ρ∗∗ = max{ρi : i ∈ In} and ε > 0. Since ηi is increasing on (ρ∗∗,∞) and

limx→∞ ηi(x) = ∞, we choose ρ3 > max{ρ∗∗/c, ρ2} satisfying

λη(cρ3)ξ(a, b,m) > M(a, b)/σ3,

where M(a, b) is same as in Proposition 2.10. Let ψiρ3(s) ≡ ηi(cρ3)σ3. Then

∫ b

a

k(t, s)ψiρ3(s) ds ≥ η(cρ3)σ3/M(a, b) > 1 for t ∈ [a, b]

and Mψi
ρ3
< 1 for i ∈ In. Hence, by (iv), we have for s ∈ [a, b] and z = (zi, ẑi) ∈

[cρ3, ρ3] × [0, ρ3]
n−1,

fi(s, z) ≥ ηi(zi)σ3zi ≥ ηi(cρ3)σ3zi ≥ ηi(cρ3)σ3(cρ3) > ψiρ3(s)Mψi
ρ3

(cρ3)

and (H0
≥)ψρ3

holds. The result follows from Theorem 3.3 (S5).

As applications of Theorem 3.7, we consider the eigenvalue problems of systems

of Caputo fractional differential equations of the form

cDqzi(t) + λ[aiz
αi

i (t) + biz
βi

i (t)]wi(ẑi) = 0 for a.e. t ∈ [0, 1] and i ∈ In (3.18)

subject to (3.2) with (3.3), where ẑi = (z1, . . . , zi−1, zi+1, . . . , zn).

We refer to [20] for the study of (3.18) with the Riemann-Liouville differential

operator Dq of order ∈ (1, 2) and the boundary condition (3.16).

Corollary 3.8. Assume that ai > 0, bi > 0, 1 < αi < ∞, 0 < βi < 1 and wi :

R
n−1
+ → R+ has continuous first-order partial derivatives and satisfies

ν = min{wi(ẑi) : ẑi ∈ R
n−1
+ and i ∈ In} > 0.

Then there exists λ0 > 0 such that for each λ ∈ (0, λ0), (3.18)–(3.2) with (3.3) has

two nonzero solutions in K.
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Proof. For i ∈ In, we define a function hi : R
n
+ → R+ by

hi(z) = λ[aiz
αi

i + biz
βi

i ]wi(ẑi) for i ∈ In.

Then all the first-order partial derivatives of hi are continuous. Let

ηi(x) = aix
αi−1 +

bi
x1−βi

for x > 0

and let ρi =
[

bi(1−βi)
ai(αi−1)

]
1

αi−βi for i ∈ In. Then ηi satisfies Theorem 3.7 (ii) and

hi(z) = ληi(zi)wi(ẑi)zi for z ∈ R
n
+.

Let ρ2 > 0 and ωi = max{wi(ẑi) : z ∈ R
n
+ with |z| ∈ [0, ρ2]}. Let m be the same as

in Proposition 2.10 and

λ0 := λ0(ρ2) = min{
m

ωi(aiρ
αi−1
2 + bi/ρ

1−βi

2 )
: i ∈ In}.

Let λ ∈ (0, λ0). Then for z ∈ R
n
+ with |z| ∈ [0, ρ2] and s ∈ [0, 1],

hi(z) ≤ λ(aiρ
αi

2 + biρ
βi

2 )ωi = λ(aiρ
αi−1
2 + bi/ρ

1−βi

2 )ωiρ2 < mρ2.

Let σ1 = σ3 = λν. Then it is obvious that Theorem 3.7 (ii) and (iv) hold. The result

follows from Theorem 3.7.

By Corollary 3.8, we have

Example 3.9. There exists λ0 > 0 such that for each λ ∈ (0, λ0), the following

Caputo fractional differential equation

cDqzi(t) + λ

n
∑

j=1

(

z2
i (t) +

√

zi(t)
)

e
Pn

j=1,j 6=i zj(t) = 0 for a.e. t ∈ [0, 1] and i ∈ In

with (3.2)–(3.3) has two nonzero solutions in K.
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