书名: Mathematical Analysis, Second Edition

作者: Tom M. Apostol

出版商: 机械工业出版社 ISBN 7-111-14689-1

页数: 492

适用范围: 大学数学系本科生

预备知识: 高中数学

习题数量: 中

习题难度:中等

推荐强度: 9.8/10

[书籍评论]

本书第一章以公理化的方式引入了实数系和复数系,接下来介绍了集合论和点集拓扑的一些基本概念和内容,为后面微积分理论的展开打好基础。从第四章开始,作者开始介绍极限、连续和导数等微积分的基本概念。在第六章作者引入了有界变差函数与可求长曲线的概念,接着就对 Riemann-Stieltjes 积分进行了介绍,而 Riemann 积分则是它的特例。第八第九章是对级数和函数序列知识的讲解。第十章介绍 Lebesgue 积分,第十一章介绍Fourier 级数以及 Fourier 积分,第十二章介绍多元微分学,第十三章介绍隐函数与极值问题,接下来的两章是关于多重 Riemann 积分与 Lebesgue 积分的介绍,最后一章介绍了复变函数的 Cauchy 定理以及留数的计算。

本书是一部现代数学名著:自 20 世纪 70 年代面世以来,一直受到西方学术界、教育界的广泛推崇,被许多知名大学指定为教材。作为一本大学数学系的本科教材,本书仔细而又不累赘地向读者介绍了微积分的思想,涵盖了数学分析绝大部分的基本知识点,并配有覆盖各级难度的练习题,适用于初次接触数学分析的读者。无论对于教学还是自学,都不失为一本理想的教材。另一方面,本书对于实分析和复分析中的部分内容也有所介绍,这其实也是很多美国大学数学教材(Mathematical Analysis 或者 Advanced Calculus)内容设置的共同点。例如作者在第十章有对 Lebesgue 积分的介绍。不过与一般实分析教材里的思路不同,作者采用了 Riesz-Nagy 的方法引入了 Lebesgue 积分,此方法直接着眼于函数及其积分,从而避免了对于测度论知识的要求;同时作者还进行了简化、延伸和调整,以适应大学本科水平的教学。

[作者简介]

Tom M. Apostol, 美国数学家, 生于犹他州。他于 1946 年在华盛顿大学西雅图分校获得数学硕士学位,于 1948 年在加州大学伯克利分校获得数学博士学位,1962 年起任加州理

工学院教授,美国数学会、美国科学发展协会(A.A.A.S)会员。对初等数论和解析数论有研究,他的著作很多,除本书外,还著有《Calculus, One-Variable Calculus with an Introduction to Linear Algebra》、《Calculus, Multi-Variable Calculus and Linear Algebra with Applications》等。

(徐晓津)

[目录]

Chapter 1 The Real and Complex Number Systems

- 1.1 Introduction
- 1.2 The field axioms
- 1.3 The order axioms
- 1.4 Geometric representation of real numbers
- 1.5 Intervals
- 1.6 Integers
- 1.7 The unique factorization theorem for integers
 - 1.8 Rational numbers
 - 1.9 Irrational numbers
 - 1.10 Upper bounds, maximum element, least upper bound (supremum)
 - 1.11 The completeness axiom
 - 1.12 Some properties of the supremum
 - 1.13 Properties of the integers deduced from the completeness axiom
 - 1.14 The Archimedean property of the real number system
 - 1.15 Rational numbers with finite decimal representation
 - 1.16 Finite decimal approximations to real numbers
 - 1.17 Infinite decimal representation of real numbers
 - 1.18 Absolute values and the triangle inequality
 - 1.19 The Cauchy-Schwarz inequality
 - 1.20 Plus and minus infinity and the extended real number system R*
 - 1.21 Complex numbers
 - 1.22 Geometric representation of complex numbers
 - 1.23 The imaginary unit
 - 1.24 Absolute value of a complex number
 - 1.25 Impossibility of ordering the complex numbers
 - 1.26 Complex exponentials
 - 1.27 Further properties of complex exponentials

- 1.28 The argument of a complex number
- 1.29 Integral powers and roots of complex numbers
- 1.30 Complex logarithms
- 1.31 Complex powers
- 1.32 Complex sines and cosines
- 1.33 Infinity and the extended complex plane C*

Chapter 2 Some Basic Notions of Set Theory

- 2.1 Introduction
- 2.2 Notations
- 2.3 Ordered pairs
- 2.4 Cartesian product of two sets
- 2.5 Relations and functions
- 2.6 Further terminology concerning functions
- 2.7 One-to-one functions and inverses
- 2.8 Composite functions
- 2.9 Sequences
- 2.10 Similar (equinumerous) sets
- 2.11 Finite and infinite sets
- 2.12 Countable and uncountable sets
- 2.13 Uncountability of the real-number system
- 2.14 Set algebra
- 2.15 Countable collections of countable sets

Exercises

Chapter 3 Elements of Point Set Topology

- 3.1 Introduction
- 3.2 Euclidean space Rn
- 3.3 Open balls and open sets in Rs
- 3.4 The structure of open sets in Rx
- 3.5 Closed sets
- 3.6 Adherent points. Accumulation points
- 3.7 Closed sets and adherent points
- 3.8 The Bolzano-Weierstrass theorem
- 3.9 The Cantor intersection theorem
- 3.10 The Lindelof covering theorem

- 3.11 The Heine-Borel covering theorem
- 3.12 Compactness in Rs
- 3.13 Metric spaces
- 3.14 Point set topology in metric spaces
- 3.15 Compact subsets of a metric space
- 3.16 Boundary of a set

Chapter 4 Limits and Coatinnity

- 4.1 Introduction
- 4.2 Convergent sequences in a metric space
- 4.3 Cauchy sequences
- 4.4 Complete metric spaces
- 4.5 Limit of a function
- 4.6 Limits of complex-valued functions
- 4.7 Limits of vector-valued functions
- 4.8 Continuous functions
- 4.9 Continuity of composite functions
- 4.10 Continuous complex-valued and vector-valued functions
- 4.11 Examples of continuous functions
- 4.12 Continuity and inverse images of open or closed sets
- 4.13 Functions continuous on compact sets
- 4.14 Topological mappings (homeomorphisms)
- 4.15 Bolzano's theorem
- 4.16 Connectedness
- 4.17 Components of a metric space
- 4.18 Arcwise cormectedness
- 4.19 Uniform continuity
- 4.20 Uniform continuity and compact sets
- 4.21 Fixed-point theorem for contractions
- 4.22 Discontinuities of real-valued functions
- 4.23 Monotonic functions

Exercises

Chapter 5 Derivatives

- 5.1 Introduction
- 5.2 Definition of derivative.

- 5.3 Derivatives and continuity
- 5.4 Algebra of derivatives
- 5.5 The chain rule
- 5.6 Onesided derivatives and infinite derivatives
- 5.7 Functions with nonzero derivative
- 5.8 Zero derivatives and local extrema
- 5.9 Rolle's theorem
- 5.10 The Mean-

Value Theorem for derivatives

- 5.11 Intermediate-value theorem for derivatives
- 5.12 Taylor's formula with remainder
- 5.13 Derivatives of vector-valued functions
- 5.14 Partial derivatives
- 5.15 Differentiatiofi of functions of a complex variable
- 5.16 The Cauchy-Riemann equations

Exercises

Chapter 6 Functions of Bounded Variation and Rectifiable Curves

- 6.1 Introduction
- 6.2 Properties of monotonic functions
- 6.3 Functions of bounded variation
- 6.4 Total variation
- 6.5 Additive property of total variation
- 6.6 Total variation on [a, x] as a function of x
- 6.7 Functions of bounded variation expressed as the difference of increasing functions
- 6.8 Continuous functions of bounded variation
- 6.9 Curves and paths
- 6.10 Rectifiable paths and arc length
- 6.11 Additive and continuity properties of arc length
- 6.12 Equivalence of paths. Change of parameter

Exercises

Chapter 7 The Riemann-Stieltjes Integral

- 7.1 Introduction
- 7.2 Notation
- 7.3 The definition of the Riemann--Stieltjes integral
- 7.4 Linear properties

- 7.5 Integration by parts
- 7.6 Change of variable in a Riemann-Stieltjes integral
- 7.7 Reduction to a Riemann integral
- 7.8 Step functions as integrators
- 7.9 Reduction of a Riemann-Stieltjes integral to a finite sum
- 7.10 Euler's summation formula
- 7.11 Monotonically increasing integrators. Upper and lower integrals
- 7.12 Additive and linearity properties of upper and lower integrals
- 7.13 Riemann's condition
- 7.14 Comparison theorems
- 7.15 Integrators of bounded variation
- 7.16 Sufficient conditions for existence of Riemann-Stieltjes integrals
- 7.17 Necessary conditions for existence of Riemann-Stieltjes integrals
- 7.18 Mean Value Theorems for Riemann-Stieltjes integrals
- 7.19 The integral as a function of the interval
- 7.20 Second fundamental theorem of integral calculus
- 7.21 Change of variable in a Riemann integral
- 7.22 Second Mean-Value Theorem for Riemann integrals
- 7.23 Riemann-Stieltjes integrals depending on a parameter
- 7.24 Differentiation under the integral sign
- 7.25 Interchanging the order of integration
- 7.26 Lebesgue's criterion for existence of Riemann integrals
- 7.27 Complex-valued Riemann-Stieltjes integrals

Chapter 8 Infinite Series and Infinite Products

- 8.1 Introduction
- 8.2 Convergent and divergent sequences of complex numbers
- 8.3 Limit superior and limit inferior of a real-valued sequence
- 8.4 Monotonic sequences of real numbers
- 8.5 Infinite series
- 8.6 Inserting and removing parentheses
- 8.7 Alternating series
- 8.8 Absolute and conditional convergence
- 8.9 Real and imaginary parts of a complex series
- 8.10 Tests for convergence of series with positive terms

- 8.11 The geometric series
- 8.12 The integral test
- 8.13 The big oh and little oh notation
- 8.14 The ratio test and the root test
- 8.15 Dirichlet's test and Abel's test
- 8.16 Partial sums of the geometric series $\sum zn$ on the unit circle [z] = 1
- 8.17 Rearrangements of series
- 8.18 Riemann's theorem on conditionally convergent series
- 8.19 Subseries
- 8.20 Double sequences
- 8.21 Double series
- 8.22 Rearrangement theorem for double series
- 8.23 A sufficient condition for equality of iterated series
- 8.24 Multiplication of series
- 8.25 Cesaro summability
- 8.26 Infinite products
- 8.27 Euler's product for the Riemarm zeta function

Chapter 9 Sequences of Functions

- 9.1 Pointwise convergence of sequences of functions
- 9.2 Examples of sequences of real-valued functions
- 9.3 Definition of uniform convergence
- 9.4 Uniform convergence and continuity
- 9.5 The Cauchy condition for uniform convergence
- 9.6 Uniform convergence of infinite series of functions
- 9.7 A space-filling curve
- 9.8 Uniform convergence and Riemann-Stieltjes integration
- 9.9 Nonuniformly convergent sequences that can be integrated term by term
- 9.10 Uniform convergence and differentiation
- 9.11 Sufficient conditions for uniform convergence of a series
- 9.12 Uniform convergence and double sequences
- 9.13 Mean convergence
- 9.14 Power series
- 9.15 Multiplication of power series
- 9.16 The substitution theorem

- 9.17 Reciprocal of a power series
- 9.18 Real power series
- 9.19 The Taylor's series generated by a function
- 9.20 Bernstein's theorem
- 9.21 The binomial series
- 9.22 Abel's limit theorem
- 9.23 Tauber's theorem

Chapter 10 The Lebesgue Integral

- 10.1 Introduction
- 10.2 The integral of a step function
- 10.3 Monotonic sequences of step functions
- 10.4 Upper functions and their integrals
- 10.5 Riemann-integrable functions as examples of upper functions
- 10.6 The class of Lebesgue-integrable functions on a general interval
- 10.7 Basic properties of the Lebesgue integral
- 10.8 Lebesgue integration and sets of measure zero
- 10.9 The Levi monotone convergence theorems
- 10.10 The Lebesgue dominated convergence theorem
- 10.11 Applications of Lebesgue's dominated convergence theorem
- 10.12 Lebesgue integrals on unbounded intervals as limits of integrals on bounded intervals
- 10.13 Improper Riemann integrals
- 10.14 Measurable functions
- 10.15 Continuity of functions defined by Lebesgue integrals
- 10.16 Differentiation under the integral sign
- 10.17 Interchanging the order of integration
- 10.18 Measurable sets on the real line
- 10.19 The Lebesgue integral over arbitrary subsets of R
- 10.20 Lebesgue integrals of complex-valued functions
- 10.21 Inner products and norms
- 10.22 The set L2(1) of square-integrable functions
- 10.23 The set L2(I) as a semimetric space
- 10.24 A convergence theorem for series of functions in L2(I)
- 10.25 The Riesz-Fischer theorem

Exercises

Chapter 11 Fourier Series and Fourier Integrals

- 11.1 Introduction
- 11.2 Orthogonal systems of functions
- 11.3 The theorem on best approximation
- 11.4 The Fourier series of a function relative to an orthonormal system
- 11.5 Properties of the Fourier coefficients
- 11.6 The Riesz-Fischer theorem
- 11.7 The convergence and representation problems for trigonometric series
- 11.8 The Riemann-Lebesgue lemma
- 11.9 The Dirichlet integrals
- 11.10 An integral representation for the partial sums of a Fourier series
- 11.11 Riemann's localization theorem
- 11.12 Sufficient conditions for convergence of a Fourier series at a particular point
- 11.13 Cesaro summability of Fourier series
- 11.14 Consequences of Fejer's theorem
- 11.15 The Weierstrass approximation theorem
- 11.16 Other forms of Fourier series
- 11.17 The Fourier integral theorem
- 11.18 The exponential form of the Fourier integral theorem
- 11.19 Integral transforms
- 11.20 Convolutions
- 11.21 The convolution theorem for Fourier transforms
- 11.22 The Poisson summation formula

Exercises

Chapter 12 Multivariable Differential Calculus

- 12.1 Introduction
- 12.2 The directional derivative
- 12.3 Directional derivatives and continuity
- 12.4 The total derivative
- 12.5 The total derivative expressed in terms of partial derivatives
- 12.6 An application to complex-valued functions
- 12.7 The matrix of a linear function
- 12.8 The Jacobian matrix
- 12.9 The chain rule
- 12.10 Matrix form of the chain rule

- 12.11 The Mean-Value Theorem for differentiable functions
- 12.12 A sufficient condition for differentiability
- 12.13 A sufficient condition for equality of mixed partial derivatives
- 12.14 Taylor's formula for functions from Rn to R1

Chapter 13 Implicit Functions and Extremum Problems

- 13.1 Introduction
- 13.2 Functions with nonzero Jacobian determinant
- 13.3 The inverse function theorem
- 13.4 The implicit function theorem
- 13.5 Extrema of real-valued functions of one variable
- 13.6 Extrema of real-valued functions of several variables
- 13.7 Extremum problems with side conditions

Exercises

Chatpter 14 Multiple Riemann Integrals

- 14.1 Introduction
- 14.2 The measure of a bounded interval in Rn
- 14.3 The Riemann integral of a bounded function defined on a compact interval in Rn
- 14.4 Sets of measure zero and Lebesgue's criterion for existence of a Multiple Riemann integral
- 14.5 Evaluation of a multiple integral by iterated integration
- 14.6 Jordan-measurable sets in Rn
- 14.7 Multiple integration over Jordan-measurable sets
- 14.8 Jordan content expressed as a Riemann integral
- 14.9 Additive property of the Riemann integral
- 14.10 Mean-Value Theorem for multiple integrals

Exercises

Chapter 15 Multiple Lebesgue Integrals

- 15.1 Introduction
- 15.2 Step functions and their integrals
- 15.3 Upper functions and Lebesgue-integrable functions
- 15.4 Measurable functions and measurable sets in Rn
- 15.5 Fubini's reduction theorem for the double integral of a step function
- 15.6 Some properties of sets of measure zero
- 15.7 Fubini's reduction theorem for double integrals

- 15.8 The Tonelli-Hobson test for integrability
- 15.9 Coordinate transformations
- 15.10 The transformation formula for multiple integrals
- 15.11 Proof of the transformation formula for linear coordinate transformations
- 15.12 Proof of the transformation formula for the characteristic function of a compact cube
- 15.13 Completion of the proof of the transformation formula

Chapter 16 Cauchy's Theorem and the Residue Calculus

- 16.1 Analytic functions
- 16.2 Paths and curves in the complex plane
- 16.3 Contour integrals
- 16.4 The integral along a circular path as a function of the radius
- 16.5 Cauchy's integral theorem for a circle
- 16.6 Homotopic curves
- 16.7 Invariance of contour integrals under homotopy
- 16.8 General form of Cauchy's integral theorem
- 16.9 Cauchy's integral formula
- 16.10 The winding number of a circuit with respect to a point
- 16.11 The unboundedness of the set of points with winding number zero
- 16.12 Analytic functions defined by contour integrals
- 16.13 Power-series expansions for analytic functions
- 16.14 Cauchy's inequalities. Liouville's theorem
- 16.15 Isolation of the zeros of an analytic function
- 16.16 The identity theorem for analytic functions
- 16.17 The maximum and minimum modulus of an analytic function
- 16.18 The open mapping theorem
- 16.19 Laurent expansions for functions analytic in an annulus
- 16.20 Isolated singularities
- 16.21 The residue of a function at an isolated singular point
- 16.22 The Cauchy residue theorem
- 16.23 Counting zeros and poles in a region
- 16.24 Evaluation of real-valued integrals by means of residues
- 16.25 Evaluation of Gauss's sum by residue calculus
- 16.26 Application of the residue theorem to the inversion formula for Laplace

transforms

16.27 Conformal mappings

Exercises

Index of Special Symbols

Index